DatasheetBay.com



ATTINY44A (ATMEL Corporation) : Total 30 Pages

No Preview Available !

[ Download PDF for PC ]

Features
High Performance, Low Power AVR® 8-bit Microcontroller
Advanced RISC Architecture
– 120 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
High Endurance, Non-volatile Memory Segments
– 2K/4K/8K Bytes of In-System, Self-programmable Flash Program Memory
• Endurance: 10,000 Write/Erase Cycles
– 128/256/512 Bytes of In-System Programmable EEPROM
• Endurance: 100,000 Write/Erase Cycles
– 128/256/512 Bytes of Internal SRAM
– Data Retention: 20 years at 85°C / 100 years at 25°C
– Programming Lock for Self-programming Flash & EEPROM Data Security
Peripheral Features
– One 8-bit and One 16-bit Timer/Counter with Two PWM Channels, Each
– 10-bit ADC
• 8 Single-ended Channels
• 12 Differential ADC Channel Pairs with Programmable Gain (1x / 20x)
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Universal Serial Interface
Special Microcontroller Features
– debugWIRE On-chip Debug System
– In-System Programmable via SPI Port
– Internal and External Interrupt Sources
• Pin Change Interrupt on 12 Pins
– Low Power Idle, ADC Noise Reduction, Standby and Power-down Modes
– Enhanced Power-on Reset Circuit
– Programmable Brown-out Detection Circuit with Software Disable Function
– Internal Calibrated Oscillator
– On-chip Temperature Sensor
I/O and Packages
– Available in 20-pin QFN/MLF/VQFN, 14-pin SOIC, 14-pin PDIP and 15-ball UFBGA
– Twelve Programmable I/O Lines
Operating Voltage:
– 1.8 – 5.5V
Speed Grade:
– 0 – 4 MHz @ 1.8 – 5.5V
– 0 – 10 MHz @ 2.7 – 5.5V
– 0 – 20 MHz @ 4.5 – 5.5V
Industrial Temperature Range: -40°C to +85°C
Low Power Consumption
– Active Mode:
• 210 µA at 1.8V and 1 MHz
– Idle Mode:
• 33 µA at 1.8V and 1 MHz
– Power-down Mode:
• 0.1 µA at 1.8V and 25°C
8-bit
Microcontroller
with 2K/4K/8K
Bytes In-System
Programmable
Flash
ATtiny24A
ATtiny44A
ATtiny84A
Rev. 8183F–AVR–06/12



No Preview Available !

[ Download PDF for PC ]

1. Pin Configurations
Figure 1-1.
Pinout of ATtiny24A/44A/84A
PDIP/SOIC
VCC
(PCINT8/XTAL1/CLKI) PB0
(PCINT9/XTAL2) PB1
(PCINT11/RESET/dW) PB3
(PCINT10/INT0/OC0A/CKOUT) PB2
(PCINT7/ICP/OC0B/ADC7) PA7
(PCINT6/OC1A/SDA/MOSI/DI/ADC6) PA6
1
2
3
4
5
6
7
14 GND
13 PA0 (ADC0/AREF/PCINT0)
12 PA1 (ADC1/AIN0/PCINT1)
11 PA2 (ADC2/AIN1/PCINT2)
10 PA3 (ADC3/T0/PCINT3)
9 PA4 (ADC4/USCK/SCL/T1/PCINT4)
8 PA5 (ADC5/DO/MISO/OC1B/PCINT5)
QFN/MLF/VQFN
Pin 16: PA6 (PCINT6/OC1A/SDA/MOSI/DI/ADC6)
Pin 20: PA5 (ADC5/DO/MISO/OC1B/PCINT5)
(ADC4/USCK/SCL/T1/PCINT4) PA4
(ADC3/T0/PCINT3) PA3
(ADC2/AIN1/PCINT2) PA2
(ADC1/AIN0/PCINT1) PA1
(ADC0/AREF/PCINT0) PA0
1
2
3
4
5
15 PA7 (PCINT7/ICP/OC0B/ADC7)
14 PB2 (PCINT10/INT0/OC0A/CKOUT)
13 PB3 (PCINT11/RESET/dW)
12 PB1 (PCINT9/XTAL2)
11 PB0 (PCINT8/XTAL1/CLKI)
NOTE
Bottom pad should be
soldered to ground.
DNC: Do Not Connect
Table 1-1.
A
B
C
D
UFBGA - Pinout ATtiny24A/44A/84A (top view)
1234
PA5 PA6 PB2
PA4 PA7 PB1 PB3
PA3 PA2 PA1 PB0
PA0
GND
GND
VCC
2 ATtiny24A/44A/84A
8183F–AVR–06/12



No Preview Available !

[ Download PDF for PC ]

ATtiny24A/44A/84A
1.1 Pin Descriptions
1.1.1 VCC
Supply voltage.
1.1.2 GND
Ground.
1.1.3
Port B (PB3:PB0)
Port B is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability except PB3 which has the RESET capability. To use pin PB3 as an I/O pin, instead of
RESET pin, program (‘0’) RSTDISBL fuse. As inputs, Port B pins that are externally pulled low
will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a
reset condition becomes active, even if the clock is not running.
Port B also serves the functions of various special features of the ATtiny24A/44A/84A as listed
in Section 10.2 “Alternate Port Functions” on page 58.
1.1.4 RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running and provided the reset pin has not been disabled. The min-
imum pulse length is given in Table 20-4 on page 176. Shorter pulses are not guaranteed to
generate a reset.
The reset pin can also be used as a (weak) I/O pin.
1.1.5
Port A (PA7:PA0)
Port A is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port A has alternate functions as analog inputs for the ADC, analog comparator, timer/counter,
SPI and pin change interrupt as described in “Alternate Port Functions” on page 58.
8183F–AVR–06/12
3



No Preview Available !

[ Download PDF for PC ]

2. Overview
ATtiny24A/44A/84A are low-power CMOS 8-bit microcontrollers based on the AVR enhanced
RISC architecture. By executing powerful instructions in a single clock cycle, the
ATtiny24A/44A/84A achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.
Figure 2-1.
VCC
GND
Block Diagram
PROGRAM
COUNTER
PROGRAM
FLASH
INSTRUCTION
REGISTER
INSTRUCTION
DECODER
CONTROL
LINES
8-BIT DATABUS
INTERNAL
OSCILLATOR
STACK
POINTER
SRAM
GENERAL
PURPOSE
REGISTERS
X
Y
Z
ALU
WATCHDOG
TIMER
MCU CONTROL
REGISTER
MCU STATUS
REGISTER
TIMER/
COUNTER0
TIMER/
COUNTER1
INTERNAL
CALIBRATED
OSCILLATOR
TIMING AND
CONTROL
STATUS
REGISTER
INTERRUPT
UNIT
PROGRAMMING
LOGIC
ISP INTERFACE
EEPROM
OSCILLATORS
DATA REGISTER
PORT A
DATA DIR.
REG.PORT A
ADC
DATA REGISTER
PORT B
DATA DIR.
REG.PORT B
PORT A DRIVERS
PORT B DRIVERS
PA[7:0]
PB[3:0]
The AVR core combines a rich instruction set with 32 general purpose working registers. All 32
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.
4 ATtiny24A/44A/84A
8183F–AVR–06/12






[ Download PDF for PC ]






0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

This is a individually operated, non profit site. If this site is good enough to show, please introduce this site to others.
* 2015 :: DatasheetBay.com :: DatasheetBay